• <tr id='FVXk7N'><strong id='FVXk7N'></strong><small id='FVXk7N'></small><button id='FVXk7N'></button><li id='FVXk7N'><noscript id='FVXk7N'><big id='FVXk7N'></big><dt id='FVXk7N'></dt></noscript></li></tr><ol id='FVXk7N'><option id='FVXk7N'><table id='FVXk7N'><blockquote id='FVXk7N'><tbody id='FVXk7N'></tbody></blockquote></table></option></ol><u id='FVXk7N'></u><kbd id='FVXk7N'><kbd id='FVXk7N'></kbd></kbd>

    <code id='FVXk7N'><strong id='FVXk7N'></strong></code>

    <fieldset id='FVXk7N'></fieldset>
          <span id='FVXk7N'></span>

              <ins id='FVXk7N'></ins>
              <acronym id='FVXk7N'><em id='FVXk7N'></em><td id='FVXk7N'><div id='FVXk7N'></div></td></acronym><address id='FVXk7N'><big id='FVXk7N'><big id='FVXk7N'></big><legend id='FVXk7N'></legend></big></address>

              <i id='FVXk7N'><div id='FVXk7N'><ins id='FVXk7N'></ins></div></i>
              <i id='FVXk7N'></i>
            1. <dl id='FVXk7N'></dl>
              1. <blockquote id='FVXk7N'><q id='FVXk7N'><noscript id='FVXk7N'></noscript><dt id='FVXk7N'></dt></q></blockquote><noframes id='FVXk7N'><i id='FVXk7N'></i>

                5月6日 杨鑫松教授学术报告(智慧教育学院)


                报 告 人: 杨鑫松

                报告题目:Synchronization of Coupled Time-Delay Neural Networks with Mode-Dependent Average Dwell Time Switching





                杨鑫松,四川大学电子信息学院教授、硕导、博导,群体智能与控制实验室负♂责人, 2019-2021年连续3年入选科睿唯安全球高被引学者和Elsevier中国高被引学者,2019SCI杂志J. Franklin Instit.杰出审稿人,访问过东南大学、香港城市大学、香港大学、香港▓理工大学,是杂志Frontiers in Applied Mathematics and StatisticsMathematical Modelling and Control SCI杂志NeurocomputingNeural Processing LettersMathematics的编辑(AE),全国复杂网络会议专业委员会委员、TCCT随机系统控制学组学术委员会委员、智々能物联专委会委员、中国系统工程学会会员、中国自动化学会会员、中国仿真学会■会员、中国工业与应用数学学会会员、美国《数学评论》的评论员,2016年获江苏省科学技术奖二等奖,2017-2019年连续3年获重庆市优秀学术论文,2020年获首届川渝优秀论文一等奖,2021年获川渝优秀论文二、三等奖各1篇。目前发表科研论文130篇,总共被SCI引用近6000次,H-index指数46,发表的杂志包括SIAM Journal on Control and Optimization, IEEE Transactions on Neural Networks and Learning Systems, IEEE Transactions on Circuits and  Systems –I, IEEE Transactions on Fuzzy Systems, IEEE Transactions on Automatic ControlIEEE Transactions on Cybernetics等国际顶级杂志。主持完成多项国家级和省级项目。


                In the literature, the effects of switching with average dwell time, Markovian switching, and intermittent coupling on stability and synchronization of dynamic systems have been extensively investigated. However, all of them are considered separately because it seems that the three kinds of switching are different from each other. This paper proposes a new concept to unify these switchings and considers global exponential synchronization almost surely (GES a.s.) in an array of neural networks with mixed delays (including time-varying delay and unbounded distributed delay), switching topology, and stochastic perturbations. A general switching mechanism with transition probability (TP) and mode-dependent average dwell time (MDADT)  is  introduced. By designing a multiple Lyapunov-Krasovskii functional and developing a set of new analytical techniques, sufficient conditions are obtained to ensure that the coupled NNs with the general switching topology achieve GES a.s., even in the case that there are both synchronizing and non-synchronizing modes. Our results have removed the restrictive condition that the increment coefficients of the multiple Lyapunov-Krasovskii functional at switching instants are larger than one. As applications, the coupled NNs with Markovian switching topology and intermittent coupling are employed. Numerical examples are provided to demonstrate the effectiveness and the merits of the theoretical analysis.